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Abstract. The El Farol bar model, proposed to study the dynamics of competition of agents in a variety
of contexts (W.B. Arthur, Amer. Econ. Assoc. Pap. Proc. 84, 406 (1994)) is studied. We characterize in
detail the three regions of the phase diagram (efficient, better than random and inefficient) of the simplest
version of the model (D. Challet, Y.-C. Zhang, Physica A 246, 407 (1997)). The efficient region is shown to
have a rich structure, which is investigated in some detail. Changes in the payoff function enhance further
the tendency of the model towards a wasteful distribution of resources.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 02.50.Ga Markov processes –
05.40.-a Fluctuation phenomena, random processes, and Brownian motion

1 Introduction

In recent years there has been a growing interest in under-
standing the dynamics of systems of interacting individ-
uals with competing goals (frustration). Simple rules for
the behavior of the individuals may lead to unexpected
properties in the behavior of the collectivity. These rather
general premises can apply to problems in different fields,
like economy [1], ecology [2] or physics [3].

To illustrate these facts Brian Arthur introduced what
he called “El Farol ” bar problem (EFBP) [4]. N individ-
uals decide, at each time step, to go to a bar or to stay
at home. The bar is enjoyable only if the attendance does
not surpass some critical number, that can be thought of
as some kind of comfort capacity. But each individual does
not know beforehand what is going to happen. To be able
to make the decision for the next time step the individuals
(which we will call agents in the following, as in previous
literature of this model) are provided each one with a set
of strategies. Using these strategies, and the knowledge of
what has happened in the portion of the history that they
can recall, the agents take decisions.

Challet and Zhang [5] have given a precise set of rules
which determine the model. The two possible choices, go-
ing to the bar or staying at home, are represented by 0 and
1. A choice is successful if the agents which make it are
in the minority (comfort capacity = 50%). The outcome
of a given simulation is represented by a series of 0’s and
1’s which characterize the successful choices at each time
step. Each agent uses a fixed set of s strategies, taken at
random from the pool of all possible strategies. Strategies
use the full information of the m previous outcomes to de-
cide the next move. As there are 2m possible combinations
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of past events, the number of strategies is 22m . After each
event, the agents update the score of their set of strategies.
The gain made by the successful strategies can either be a
fixed constant, or depend on the size of the group formed
at that time step. In the simplest version of the model,
one point is assigned to each successful strategy. When an
agent has two or more strategies with the same score, one
of them is picked at random. This choice of payoff is the
one discussed in detail below. The model is defined by the
three parameters: N , the number of agents, m, the num-
ber of time steps used by each strategy in determining the
next best move, and s, the number of strategies available
to each agent. Extensions to other payoff schemes, simi-
lar to those used in [5–7] are also mentioned. Note that
the original work [4] used a much less constrained set of
strategies and a different comfort capacity (60%).

The model, with the set of rules described above, was
investigated in [8,6]. The authors analyze the mean size
and the fluctuations of the groups taking each of the two
choices available. It is argued that the model can be char-
acterized in terms only of the combination ρ = 2m/N .
The average group size is N/2. The distribution of sizes
is symmetrical around this value. The mean quadratic de-
viation from the average, σ, is a measure of the number
of points accumulated by all the agents. This number is
maximum when the two groups are almost equal, in which
case σ ∼ O(1). As function of σ2/N and ρ three regimes
can be distinguished, as function of the total number of
strategies at play [8]:

(i) when ρ � 1, the number of strategies available to
the agents is small, and the value of σ approaches
the limit expected when the agents take random de-
cisions, σ2/N = 1/4;
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Fig. 1. Different phases found in the EFBP. The lower part
shows the evolution of σ2/N as function of ρ, circles are for
s = 2 and stars are for s = 6. The insets show histograms of
the attendance number in the different phases, with N = 101:
(a) efficient, m = 2, s = 2; (b) better than random m = 6,
s = 2; and (c) inefficient m = 10, s = 2. The top figure shows
the difference in punctuation between the maximum scored and
the minimum scored strategies in these three cases: dotted line
for (a), dashed line for (b), and continuous line for case (c).

(ii) if ρ � 1, almost all possible strategies are in pos-
session of the agents, and their performance is worst
than random, as σ2/N > 1/4;

(iii) finally, for ρ ∼ 1 the agents perform statistically bet-
ter than random. The curve of σ2/N versus ρ shows
a minimum.

The authors define regime (i) as inefficient, as the
agents have little information, and regime (ii) as efficient,
as agents have all available information at their disposal.

In Section 2, we analyze the model defined above, with
emphasis on the structure shown in the efficient region.
Section 3 presents an interpretation of the results. Then,
Section 4, we discuss results obtained by varying the pay-
off function which determines the choice of strategies. Sec-
tion 5 analyzes a seemingly trivial variation of the model:
the majority game, when it becomes preferable to be in
the majority. The final section presents the conclusions.

2 Minority game

The transition discussed in [8] is displayed in Figure 1 for
s = 2 and s = 6. The difference between the efficient and
inefficient regimes is sharper for small values of s. Each
simulation of the model starts from a history of length
m+ 3 to initialize the scores of the strategies. The results
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Fig. 2. Attendance numbers distributions for N = 1001.

shown in the paper are averages over the 2m+3 possible
initial conditions defined in this way. In almost all cases,
the system evolves towards a steady state which is inde-
pendent of the initial conditions.

The peaks in the size distributions are always well ap-
proximated by Gaussian functions. The large value of σ in
the efficient region is due to the formation of new peaks
away from N/2. A pictorial view of this effect is shown
in Figure 2, where the different regimes are studied by
varying m and s. The attendances have been normalized
to one in the interval [−1, 1]. In the range of values of ρ
where three peaks can be clearly resolved, the weight of
the central peak is one half of the total, and the other two
peaks include one fourth of the recorded attendances. The
central peak is always well approximated by a Gaussian
of width

√
N/2 (see also Fig. 3), which corresponds to

random choices by the agents.
As one leaves the efficient region, the peaks merge with

the central one, whose width decreases first and then in-
creases, to reach the random value for large values of ρ.
For small values of ρ, the peak structure is very rich, and
seems self similar, as shown in Figure 3.

As pointed out in [8], it is somewhat unexpected the
poor performance of the agents when a large amount of
information is available. It is even more remarkable the
rich structure shown in Figure 3, which shows that the
evolution is far from random. This behavior is also consis-
tent with the existence of non trivial patterns in the time
series, beyond the reach of the agents [8].

A plot of the attendances at successive times is shown
in Figure 4. We have chosen the parameters in such a way
that the distribution of attendances shows three separated
peaks.

We have completed the study the evolution of the dif-
ferent peaks by analyzing their evolution after an ini-
tial series of random choices. In the time series shown
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Fig. 3. Attendance numbers distribution for N = 100001, s =
4, and m = 4, normalized in the interval [0, 100001]. (a) Full
distribution where the y-axis has been truncated in order to
appreciate the spreading of the lateral peaks. (b) Magnification
of the region marked in (a) with dashed lines. (c) Points in the
central peak. The continuous line is a Gaussian, centered at
N/2, with weight half of the total distribution and deviation√
N/2.

in Figure 5, the agents make choices randomly, although
their strategies keep updating the scores. At a given time
step (2048), the agents start to use the strategies at their
disposal.

The peak structure is robust, and develops immedi-
ately. As shown in Figure 5, the peaks split from the cen-
tral peak and move to their positions in the steady state
discussed earlier.

3 Interpretation

The results presented in the previous section allow us
to gain some understanding of the complex dynamics of
the efficient regime. In this region, no strategy can stay
with the highest score for long. The repeated use of a
given strategy by a significant number of agents leads to
the raise of other strategies, preferably those more anti-
correlated with the one at play. As a result of this, the
most punctuated strategy (the best considered by the
agents) has many chances of making its users to loose.
And, eventually, the agents segregate into anticorrelated
groups when some degree of evolution is incorporated [9].

For simplicity, we now assume that there are two an-
ticorrelated strategies, x and x̄ which have the highest
scores most of the time. Let us denote nx and nx̄ the
number of agents which have strategy x and x̄. We can
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Fig. 4. Attendance in a given group at two successive intervals.
The parameters used are s = 2, m = 2 and N = 1001.

Fig. 5. Attendance number versus time for the game in which
a transition is forced from a random game to a minority game
(see text). The parameters of the minority game are:N = 1001,
s = 4, and m = 4 (6) for the bottom (top) graphs.

take nx ≈ nx̄ = ncorrel. We now denote as nrandom the
number of agents which have neither x nor x̄. The choices
of these nrandom agents can be taken to be at random, as
they are unable to recognize the series which give rise to
the high scores of x and x̄.

When strategy x has the highest score, the two groups
will have sizes close to nrandom/2+ncorrel and nrandom/2−
ncorrel, respectively. This outcome will give no points to
x, while strategy x̄, which would have lead to the most
favorable choice, gains one point. If the score of x̄ remains
below that of x, the process repeats itself. A steady state
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is reached when the scores of x and x̄ differ by, at most,
one point. Then, an outcome with two unequal groups of
sizes nrandom/2+ncorrel and nrandom/2−ncorrel is followed
by the formation of two groups of similar size, ≈ N/2.
The fact that there are nrandom agents acting at random
implies that these values are the average of Gaussian peaks
of similar width.

We can estimate the value of ncorrel from the analysis
in [7]. We classify the 22m strategies into 2m mutually un-
correlated, maximally correlated or anticorrelated classes.
Then, nx ≈ N/2m = 1/ρ.

The previous analysis gives a plausible explanation
of the three peaks observed throughout most of the ef-
ficient region of parameter space. It can be extended, in
a straightforward way, to the case when the dominant
strategies are more than two. The main new ingredient
is that there are situations in which two, or more, dom-
inant strategies can have the same score. Let us imagine
that the strategies with the highest scores are x1, x2, x̄1

and x̄2. Then, at a given instant, the strategy with the
highest score can be x1, x2 ..., but also x1 and x2 (or sim-
ilar combinations) simultaneously. If, in addition, x1 and
x2 lead to the same outcome, the majority group will be
of size nrandom/2 + nx1 + nx2 . This combination will be,
probably, less likely, leading to lower peaks further away
from the average, in agreement with the findings reported
here.

We have checked that there is a trivial case where this
analysis reproduces the observed evolution: m = 2 and
s = 16, where all agents have all strategies. The atten-
dance histograms show two sharp peaks at 1 and N , and
a Gaussian peak with half the weight of the total distri-
bution at N/2, and deviation

√
N/2.

4 Varying the rewards for the winners

We now look to the effect of changing the way in which the
different strategies are updated after each outcome. The
simplest modification is to relate the change in the score
to the size of the minority group [5,6]. In the following,
we assume that the payoff, ∆p, depends linearly with the
size, a. If the score is incremented by a, strategies which
lead to groups with attendances close to N/2 are favored.
If, on the other hand, the score is incremented by N/2−a,
the tendency is the opposite, and strategies which lead to
very small groups are favored.

The distributions generated by these two payoff choices
are plotted in Figure 6. The distribution obtained by the
step payoff discussed in the previous section is also plotted,
for comparison.

Contrary to intuition, the two distributions seem to go
in the opposite direction to what the choice of payoff leads
to think. It must be noted that, when the second choice of
payoff function is shifted by a constant, ∆p = N/2−a+k,
the central peak tends to disappear, and it is replaced
by two peaks at the sides. This result is similar to other
findings with a payoff which also favors small groups [6].

We interpret the broad structure for the payoff func-
tion a as due to the swift shuffle of the highest ranking
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Fig. 6. Attendance distributions for N = 1001, m = 4, and
s = 4. Dashed line is for the step payoff, continuous line for
∆p = a, and dotted line for ∆p = N/2− a.

strategies. Outcomes with nearly equal groups give rise to
large changes in the scores of the strategies. Thus, long
living cycles, of the type described in the previous sec-
tion, cannot form. The highest ranking strategy changes
rapidly. As all strategies are in play, groups of many sizes
are generated, despite the fact that the payoff favors sizes
close to N/2.

In the opposite case, with payoff function equal to
N/2−a, we ascribe the large peak at N/2 to frequent sit-
uations when many strategies have the same score. This
situation is self sustaining, as, when the two groups are of
sizes N/2 and N/2 + 1, there is no change in the scores of
the strategies. This is what happens in half of the possible
2m+3 initial conditions, and corresponds to the delta peak
in Figure 6. The rest of the distribution is a good average
of what happens in the other half of the initial conditions.
The shift of the payoff by a constant described earlier re-
duces the probability of tie-ups, and leads to a double
peaked distribution. These peaks displaced from the cen-
ter seem, in this case, related to the two peaks in the step
payoff case. It is likely that the evolution of the model is
governed by cycles with a few dominating strategies.

5 Majority game

We have also studied the majority game, in which the
agents prefer to be in a overcrowded bar or leave the
bar empty. The methodology is the same as in the mi-
nority game, in which the different initial conditions tend
to give similar results. Here, initial conditions may make
big changes in the attendance distributions.
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Fig. 7. The analogous diagram of Figure 1 for the majority
rule. Here N = 101 and s = 4. The dashed line is for σm =
N/2s.

Results are trivial (the full majority is attained at
all time steps) only when all agents have all strategies
(s = 22m). Even in this case, and depending on the initial
conditions, the group (0 or 1) which obtains the majority
may oscillate in time.

The obtained distributions for different values of m
and, consequently, ρ, are plotted in Figure 7.

The particular placement of the fixed points makes
that a more convenient measure of the efficiency should
be used. We will use the mean deviation, σm, calculated
around the value N for the attendance, and shifting the
attendances a below N/2 to a + N . Thus, σm also gives
a measure of the overall gain made by the agents. In the
three plots of attendances, where the attendance axis is
not folded, the two large peaks near the limits are not
shown. These peaks correspond to limit cycles where the
attendances do not fluctuate.

The relative weight of this peak, for s = 4, at suffi-
ciently large times, is 0.56 for m = 2, 0.078 for m = 6
and 0.031 for m = 10. The number of agents which are
able to coordinate among themselves and take part in this
cycle is, on the average, N −N/2s, if s < 22m . Then, the
lower limit for σ2

m/N is N/22s. This value is also plotted
in Figure 7.

The relative weight of this peak, which represents
the average number of coordinated agents, converges at
sufficiently large times to 0.56 for m = 2, 0.078 for m = 6
and 0.031 for m = 10. It is remarkable that the agents
are not too effective in acting in a coordinated manner.

Most initial conditions lead to histories where the majority
group is well below the intuitive natural limit. This result
is consistent with the spin glass features reported in [8].

6 Conclusions

As we have seen, the El Farol bar problem has a rich struc-
ture. We have focused mostly on the behavior in the effi-
cient regime, where most of the strategies are at the dis-
posal of the agents. As already remarked in [8], the model
has many features in common with frustrated systems in
statistical mechanics. In particular, most initial conditions
lead to a poor performance of the system as a whole. The
model seems unable to select a pool of strategies such
that the global gain by the agents is maximized. In par-
ticular, those agents which have access to the strategies
with the highest scores at a given moment perform worse
than those which do not. The latter play basically at ran-
dom, and profit from the unproductive coordination of the
players using the nominally best strategies.

This effect seems to remain when the payoff to the dif-
ferent strategies is varied. It is also remarkable that the in-
trinsic frustration of the model shows up when the agents
try to be in the majority. Most initial conditions lead
to evolutions where the agents fail to coordinate among
themselves.
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